iedc-go/vendor/github.com/youmark/pkcs8/pkcs8.go
2022-10-19 21:32:34 +08:00

306 lines
9.2 KiB
Go

// Package pkcs8 implements functions to parse and convert private keys in PKCS#8 format, as defined in RFC5208 and RFC5958
package pkcs8
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"errors"
"golang.org/x/crypto/pbkdf2"
)
// Copy from crypto/x509
var (
oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
)
// Copy from crypto/x509
var (
oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
)
// Copy from crypto/x509
func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
switch curve {
case elliptic.P224():
return oidNamedCurveP224, true
case elliptic.P256():
return oidNamedCurveP256, true
case elliptic.P384():
return oidNamedCurveP384, true
case elliptic.P521():
return oidNamedCurveP521, true
}
return nil, false
}
// Unecrypted PKCS8
var (
oidPKCS5PBKDF2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 12}
oidPBES2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 13}
oidAES256CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 42}
oidAES128CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 2}
oidHMACWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 113549, 2, 9}
oidDESEDE3CBC = asn1.ObjectIdentifier{1, 2, 840, 113549, 3, 7}
)
type ecPrivateKey struct {
Version int
PrivateKey []byte
NamedCurveOID asn1.ObjectIdentifier `asn1:"optional,explicit,tag:0"`
PublicKey asn1.BitString `asn1:"optional,explicit,tag:1"`
}
type privateKeyInfo struct {
Version int
PrivateKeyAlgorithm []asn1.ObjectIdentifier
PrivateKey []byte
}
// Encrypted PKCS8
type prfParam struct {
IdPRF asn1.ObjectIdentifier
NullParam asn1.RawValue
}
type pbkdf2Params struct {
Salt []byte
IterationCount int
PrfParam prfParam `asn1:"optional"`
}
type pbkdf2Algorithms struct {
IdPBKDF2 asn1.ObjectIdentifier
PBKDF2Params pbkdf2Params
}
type pbkdf2Encs struct {
EncryAlgo asn1.ObjectIdentifier
IV []byte
}
type pbes2Params struct {
KeyDerivationFunc pbkdf2Algorithms
EncryptionScheme pbkdf2Encs
}
type pbes2Algorithms struct {
IdPBES2 asn1.ObjectIdentifier
PBES2Params pbes2Params
}
type encryptedPrivateKeyInfo struct {
EncryptionAlgorithm pbes2Algorithms
EncryptedData []byte
}
// ParsePKCS8PrivateKeyRSA parses encrypted/unencrypted private keys in PKCS#8 format. To parse encrypted private keys, a password of []byte type should be provided to the function as the second parameter.
//
// The function can decrypt the private key encrypted with AES-256-CBC mode, and stored in PKCS #5 v2.0 format.
func ParsePKCS8PrivateKeyRSA(der []byte, v ...[]byte) (*rsa.PrivateKey, error) {
key, err := ParsePKCS8PrivateKey(der, v...)
if err != nil {
return nil, err
}
typedKey, ok := key.(*rsa.PrivateKey)
if !ok {
return nil, errors.New("key block is not of type RSA")
}
return typedKey, nil
}
// ParsePKCS8PrivateKeyECDSA parses encrypted/unencrypted private keys in PKCS#8 format. To parse encrypted private keys, a password of []byte type should be provided to the function as the second parameter.
//
// The function can decrypt the private key encrypted with AES-256-CBC mode, and stored in PKCS #5 v2.0 format.
func ParsePKCS8PrivateKeyECDSA(der []byte, v ...[]byte) (*ecdsa.PrivateKey, error) {
key, err := ParsePKCS8PrivateKey(der, v...)
if err != nil {
return nil, err
}
typedKey, ok := key.(*ecdsa.PrivateKey)
if !ok {
return nil, errors.New("key block is not of type ECDSA")
}
return typedKey, nil
}
// ParsePKCS8PrivateKey parses encrypted/unencrypted private keys in PKCS#8 format. To parse encrypted private keys, a password of []byte type should be provided to the function as the second parameter.
//
// The function can decrypt the private key encrypted with AES-256-CBC mode, and stored in PKCS #5 v2.0 format.
func ParsePKCS8PrivateKey(der []byte, v ...[]byte) (interface{}, error) {
// No password provided, assume the private key is unencrypted
if v == nil {
return x509.ParsePKCS8PrivateKey(der)
}
// Use the password provided to decrypt the private key
password := v[0]
var privKey encryptedPrivateKeyInfo
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("pkcs8: only PKCS #5 v2.0 supported")
}
if !privKey.EncryptionAlgorithm.IdPBES2.Equal(oidPBES2) {
return nil, errors.New("pkcs8: only PBES2 supported")
}
if !privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.IdPBKDF2.Equal(oidPKCS5PBKDF2) {
return nil, errors.New("pkcs8: only PBKDF2 supported")
}
encParam := privKey.EncryptionAlgorithm.PBES2Params.EncryptionScheme
kdfParam := privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.PBKDF2Params
iv := encParam.IV
salt := kdfParam.Salt
iter := kdfParam.IterationCount
keyHash := sha1.New
if kdfParam.PrfParam.IdPRF.Equal(oidHMACWithSHA256) {
keyHash = sha256.New
}
encryptedKey := privKey.EncryptedData
var symkey []byte
var block cipher.Block
var err error
switch {
case encParam.EncryAlgo.Equal(oidAES128CBC):
symkey = pbkdf2.Key(password, salt, iter, 16, keyHash)
block, err = aes.NewCipher(symkey)
case encParam.EncryAlgo.Equal(oidAES256CBC):
symkey = pbkdf2.Key(password, salt, iter, 32, keyHash)
block, err = aes.NewCipher(symkey)
case encParam.EncryAlgo.Equal(oidDESEDE3CBC):
symkey = pbkdf2.Key(password, salt, iter, 24, keyHash)
block, err = des.NewTripleDESCipher(symkey)
default:
return nil, errors.New("pkcs8: only AES-256-CBC, AES-128-CBC and DES-EDE3-CBC are supported")
}
if err != nil {
return nil, err
}
mode := cipher.NewCBCDecrypter(block, iv)
mode.CryptBlocks(encryptedKey, encryptedKey)
key, err := x509.ParsePKCS8PrivateKey(encryptedKey)
if err != nil {
return nil, errors.New("pkcs8: incorrect password")
}
return key, nil
}
func convertPrivateKeyToPKCS8(priv interface{}) ([]byte, error) {
var pkey privateKeyInfo
switch priv := priv.(type) {
case *ecdsa.PrivateKey:
eckey, err := x509.MarshalECPrivateKey(priv)
if err != nil {
return nil, err
}
oidNamedCurve, ok := oidFromNamedCurve(priv.Curve)
if !ok {
return nil, errors.New("pkcs8: unknown elliptic curve")
}
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 1
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 2)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyECDSA
pkey.PrivateKeyAlgorithm[1] = oidNamedCurve
pkey.PrivateKey = eckey
case *rsa.PrivateKey:
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 0
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyRSA
pkey.PrivateKey = x509.MarshalPKCS1PrivateKey(priv)
}
return asn1.Marshal(pkey)
}
func convertPrivateKeyToPKCS8Encrypted(priv interface{}, password []byte) ([]byte, error) {
// Convert private key into PKCS8 format
pkey, err := convertPrivateKeyToPKCS8(priv)
if err != nil {
return nil, err
}
// Calculate key from password based on PKCS5 algorithm
// Use 8 byte salt, 16 byte IV, and 2048 iteration
iter := 2048
salt := make([]byte, 8)
iv := make([]byte, 16)
_, err = rand.Read(salt)
if err != nil {
return nil, err
}
_, err = rand.Read(iv)
if err != nil {
return nil, err
}
key := pbkdf2.Key(password, salt, iter, 32, sha256.New)
// Use AES256-CBC mode, pad plaintext with PKCS5 padding scheme
padding := aes.BlockSize - len(pkey)%aes.BlockSize
if padding > 0 {
n := len(pkey)
pkey = append(pkey, make([]byte, padding)...)
for i := 0; i < padding; i++ {
pkey[n+i] = byte(padding)
}
}
encryptedKey := make([]byte, len(pkey))
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(encryptedKey, pkey)
// pbkdf2algo := pbkdf2Algorithms{oidPKCS5PBKDF2, pbkdf2Params{salt, iter, prfParam{oidHMACWithSHA256}}}
pbkdf2algo := pbkdf2Algorithms{oidPKCS5PBKDF2, pbkdf2Params{salt, iter, prfParam{oidHMACWithSHA256, asn1.RawValue{Tag: asn1.TagNull}}}}
pbkdf2encs := pbkdf2Encs{oidAES256CBC, iv}
pbes2algo := pbes2Algorithms{oidPBES2, pbes2Params{pbkdf2algo, pbkdf2encs}}
encryptedPkey := encryptedPrivateKeyInfo{pbes2algo, encryptedKey}
return asn1.Marshal(encryptedPkey)
}
// ConvertPrivateKeyToPKCS8 converts the private key into PKCS#8 format.
// To encrypt the private key, the password of []byte type should be provided as the second parameter.
//
// The only supported key types are RSA and ECDSA (*rsa.PublicKey or *ecdsa.PublicKey for priv)
func ConvertPrivateKeyToPKCS8(priv interface{}, v ...[]byte) ([]byte, error) {
if v == nil {
return convertPrivateKeyToPKCS8(priv)
}
password := string(v[0])
return convertPrivateKeyToPKCS8Encrypted(priv, []byte(password))
}